

167
http://pkm.uika-bogor.ac.id/index.php/ABDIDOS/issue/archive

Submitted: December-2023 Received: January-2024 Available Online: March-2024

Vol 8 No 1, Maret 2024

pISSN: 2614-6509

eISSN: 2620-5156
Jurnal Pengabdian Pada Masyarakat

ABDI DOSEN

THE IMPLEMENTATION OF AUTOMATED ASSESSMENT

PLATFORM IN ASYNCHRONOUS LEARNING FOR INDEPENDENT

LEARNING OF GAME PROGRAMMING USER INTERFACE FOR

STUDENTS AT TELKOM MALANG VOCATIONAL HIGH SCHOOL

Usman Nurhasan 1, Anugrah Nur Rahmanto 2, Faiz Usbah Mubarok 3,

Almira Rahma Sabita 4

Politeknik Negeri Malang
1* usmannurhasan@polinema.ac.id, 2 anugrahnur@polinema.ac.id, 3 faizum@polinema.ac.id,

4 almirasabitaaa@gmail.com

Abstract

The rapid development of the gaming industry has prompted the integration of programming

education into vocational education curricula, yet manual assessment of student projects

remains a significant constraint. This study proposes a C#-based game programming interface

with automatic assessment using unit testing. Students receive learning materials from teachers

for self-directed study, employing interface development methods based on Test-Driven

Development (TDD) principles and prototype research methods. Research results demonstrate

the success of automated assessment, enhancing the efficiency of student evaluations and the

quality of game programming education. Academic data confirms improved student learning

outcomes. Advantages of automated assessment include time efficiency for teachers,

consistency, prompt feedback, support for self-directed learning, TDD implementation, and

overall enhancement of learning quality. Data analysis of programming modules (MP) and test

modules (MT) indicates the effectiveness of the C#-based game programming interface with

TDD. Automated assessment eliminates the burden of manual correction, allowing teachers to

focus on pedagogical aspects. Consistency is evident in uniform outcomes across all modules.

Prompt feedback provides students with instant improvement opportunities, while self-directed

learning support and TDD implementation are reflected in the success of test modules. In

conclusion, this innovation effectively addresses assessment challenges in game programming

education within vocational settings.

Keywords: Automated Assessment, Game Programming Interface, Test-Driven Development

(TDD), Unit Testing, Vocational Education

INTRODUCTION

The Indonesia Game Developer Exchange (IGDX) has been witness to the rapid

transformation of the gaming industry, as emphasized by I Nyoman Adhiarna, the Director of

Digital Economy at the Ministry of Communication and Informatics (Kominfo). The

phenomenal growth in the number of gamers in Indonesia, exceeding 200 million internet

http://pkm.uika-bogor.ac.id/index.php/ABDIDOS/issue/archive
mailto:usmannurhasan@polinema.ac.id
mailto:anugrahnur@polinema.ac.id
mailto:faizum@polinema.ac.id
mailto:almirasabitaaa@gmail.com

168

users in 2021, signifies a remarkable shift(Kevin Rizky Pratama, 2022). These gamers, spread

across diverse regions, primarily belong to the 24 to 29 age group, with a significant portion

being professional players. Despite the thriving local game industry, the count of game

developers remains limited when compared to the expanding player base. The perceived

complexity associated with game development emerges as a societal challenge(Saputra et al.,

2016).

This research identifies a shortage of game programmers and advocates for the

integration of game programming content into vocational curricula as a potential solution.

Among the 57 Vocational High Schools (SMK) in Malang, only 16 offer specialized programs

focused on programming(Котлер, 2008). The growing community of players and game

developers presents opportunities for vocational institutions to align their curricula with the

dynamic needs of the gaming industry. However, the evaluation of student game projects

poses significant challenges, requiring considerable time and effort from educators.

To address these challenges, the author proposes a comprehensive solution through

the implementation of an Independent Learning Interface in Game Programming, delivering

educational materials through a dedicated website. This innovative approach provides students

with the flexibility to engage in learning at their own pace, supported by visual representations

of their academic progress(Végh & Takáč, 2021). The inclusion of Unit Testing in the C#

programming language for automated assessments serves as an integral component of this

proposed solution(Nurhasan, n.d.). The envisioned outcome is an enhanced efficiency in the

realm of game programming education at SMK Telkom Malang, simultaneously offering

substantial support to educators in streamlining the evaluation process of student projects.

Through these initiatives, the academic landscape aims to adapt and thrive amidst the dynamic

contours of the burgeoning game development industry(Khotimah et al., 2019).

The research sheds light on the inadequate number of game programmers, specifically

in the context of Malang's Vocational High Schools. Out of the 57 schools, only 16 have

programs that delve into programming, indicating a significant gap in meeting the industry's

demand for skilled professionals. The proposal to incorporate game programming content into

vocational curricula emerges as a strategic response to bridge this gap and empower students

with the necessary skills for the evolving gaming industry. However, the challenges don't end

with the integration of programming courses(Min et al., 2013). Evaluating student game

projects presents a formidable obstacle, and educators find themselves grappling with the time

and effort required for thorough assessments. In response to this, the research proposes the

implementation of an Independent Learning Interface in Game Programming. This forward-

thinking solution leverages a dedicated website to disseminate educational materials, allowing

students to navigate their learning journey at their own pace. The inclusion of graphical

representations of academic progress adds a layer of visual feedback, enhancing the learning

experience(Ruslan et al., 2021). Crucially, the proposal incorporates Unit Testing in the C#

programming language for automated assessments. This not only streamlines the evaluation

process but also ensures a standardized and efficient way to gauge students' understanding and

application of programming concepts(Wijaya et al., 2021). The envisioned outcome is not

only an upskilled student body but also a more streamlined and effective educational process

for educators.

The significance of this proposal extends beyond individual student progress. By

169

addressing the shortage of game programmers and enhancing the learning experience,

vocational institutions align themselves with the dynamic demands of the gaming

industry(Syaifudin et al., 2021). The proposed solution serves as a proactive response to the

societal challenge of perceived complexity in game development. It not only prepares students

for careers in game programming but also contributes to the growth and sustainability of the

local game industry. In conclusion, the proposal for an Independent Learning Interface in

Game Programming, enriched with Unit Testing, represents a holistic approach to address the

challenges faced by Malang's Vocational High Schools in meeting the demands of the

evolving game development industry. Through this innovative solution, the academic

landscape endeavors to adapt, thrive, and contribute meaningfully to the burgeoning gaming

ecosystem(Khotimah et al., 2019).

IMPLEMENTATION METHOD

In concluding this task, the undertaken procedures are grounded in accordance with the

CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology, as depicted in

the diagram provided below :

Figure 1. Cross – Industry Standard Process for Data Mining

Source : (North, 2012)

Business Understanding

In this initial phase, we delved into understanding the existing business processes by

conducting interviews with our user partners, specifically a Vocational High School (SMK)

in Malang. Simultaneously, we observed their game programming classes, with a specific

focus on the utilization of Unity. To formalize the collaboration, the research product was

employed to create a partnership document. The primary aim of this phase was to attain an

objective comprehension of the current business processes and the challenges faced by both

170

students and educators involved in game programming. Additionally, this stage encompassed

an in-depth analysis of the software requirements.

The requirements gathering phase is crucial for formulating learning materials for the

user interface (UI) in game programming. It involves defining research objectives and

processing the acquired data. The data collection process encompassed extensive literature

review, observation, and interviews at SMK Telkom Malang, spanning from the approval of

the research proposal to the submission of the campus letter, occurring between December

2022 and April 2023. The literature review entailed a meticulous study of documents,

references, books, internet sources, and other scholarly materials. Subsequently, we conducted

observations and interviews with educators at SMK Telkom Malang. The positive response

received from the educators stemmed from the current challenges they face when manually

correcting each student's project, a process involving numerous assets. The introduction of the

system was perceived as a valuable assistance by the teachers. Alongside the positive

feedback, the educators provided insightful suggestions to enhance the system further.

Notably, it was highlighted that SMK Telkom Malang already possesses adequate

infrastructure, and 10th-grade students are equipped with foundational game programming

lessons using the C# language(Newkirk & Vorontsov, 2009). These activities have generated

essential data that requires meticulous preparation: Research target data, encompassing

student names, class details, basic programming skills, Unity version in use, and the methods

employed for teaching and learning. Learning materials for the user interface (UI) in games,

intended for dissemination to the research targets. The process of employing unit testing,

involving both student code and test code.

Data Understanding

To address the issues faced by programming teachers and students, data from a Malang

SMK and programming education data from Politeknik Negeri Malang were used. This

ensured that the system output would meet user needs. The learning templates for Unity

programming served as a reference for structuring the learning schemes for this application.

Collaboration between Politeknik Negeri Malang and an SMK as user partners aimed to set

higher standards than applications limited to a single institution. The necessary output for this

phase was a document mapping potential product users for feasibility study documentation.

Data Preparation

Collected data underwent alignment in terms of data type, format, or deletion to ensure

relevance and readiness for processing. In the first-year study, the focus was on designing

basic game programming learning curricula and interactive user interface programming

learning curricula. In the second year, the emphasis shifted to developing a Unity-based game

programming learning curriculum. This segmentation was based on the SKKNI occupation

map, distinguishing between junior and senior multimedia programming. The primary

performance indicators for feasibility study documentation were documented in the second

year.

171

Modeling

In this phase, we modeled the investigation based on the prepared data, selecting

appropriate models with low error rates and efficient processing times for real-time learning

systems. The system's design was based on needs analysis and detailed software output

descriptions. Additionally, a database design was created, along with an automatic coding

procedure model. Unit Testing, using NUnit for automatic assessment, was an integral part of

this solution. The modeled programming game content underwent unit and integration tests.

The business process diagram (Figure 2) provided a comprehensive guide for implementing

asynchronous learning innovation in game programming.

Figure 2. Asynchronous Learning application business processes

Through Figure 2, each step related to achieving learning objectives was detailed, from

module access to the learning process and assessment using unit testing. It illustrated the

dynamic and collaborative interaction between students and teachers, aiming for optimal

learning outcomes. This structured information served as a comprehensive and relevant guide

for effective implementation of asynchronous learning in game programming.

The image elucidated that, on the client or student side, learning tools such as Unity

served as the platform for module completion. The module, a PDF guide containing student

code, facilitated student learning in each module. On the server or teacher side, validation was

performed using Unity for automatic assessment aided by unit testing. Automatic assessment

involved comparing test code with student code, containing module answers. The system

architecture provided a fundamental structure for utilizing asynchronous learning as an

independent learning innovation in game programming, as depicted in Figure 3.

172

Figure 3. Asynchronous Learning System Architecture

Evaluation

This phase involved evaluating the models before implementation on the research

subjects. In the first-year study, the Computer Assistance Learning (CAL) model was tested

by combining materials based on the planned curriculum. The result was documented

feasibility evidence for the first-year research. The second-year study included testing the

applied professional product "Independent Learning Programming Unit." This testing focused

on the software's functional aspects, user acceptance testing, and the application's impact as a

Classroom Action Support application. The study used an experimental research method,

evaluating the impact of using the Selpu application on programming learning.

Deployment

In this phase, we implemented the evaluated prototype in relevant research subjects,

conducted product training, monitored the product, and provided maintenance training over a

specific period. The first-year research aimed to patent the use of unit and integration tests in

Unity programming.

RESULTS AND DISCUSSION

The system built consists of learning materials, test code, and a website. Learning

materials serve as instructions for students' work. There are two learning materials in this

research, namely the learning module and the test module. The learning module functions as

a comprehensive and detailed guide on how to follow the material within the module. In the

learning module, students are provided with step-by-step instructions to understand and

implement the concepts in practice. Meanwhile, the test module is designed with a few new

commands aimed at testing the understanding and skills of students in applying the previously

learned learning module. The test code, which serves as a reference source code for correcting

students' work, is utilized. The website acts as a browser used as a repository for collecting

students' work.

Later on the website, there will be learning materials, test code, and callbacks that can

be downloaded by students. Subsequently, students can work on the materials according to

173

the instructions provided in Unity. This applies the Test-Driven Development (TDD) method,

where students can learn independently with the help of learning materials. From the process

of working on learning materials, students will generate student code that can be automatically

corrected with the assistance of unit testing[11]. The working mechanism of this automatic

assessment involves comparing student code and test code in Unity. The results of the

automatic assessment will be directly sent to the website with the help of a callback. Thus,

after students perform automatic assessments, the results can be viewed by both teachers and

students through the website. The recorded results on the website include total tests, successful

tests, failed tests, test dates, and scores. The number of tasks for each student may vary, and

there is no limit to the number of tasks students can undertake in the learning module.

Once the system is constructed, testing is conducted using the Blackbox Testing method.

Blackbox testing is performed to test learning materials and system functionality[12]. In this

method, testers have the ability to determine a series of input conditions used to test the

system's functionality. Testers do not need to know or pay attention to the internal

implementation details of the software but rather focus on behavior and output results in

accordance with predetermined specifications. Blackbox testing is conducted as part of the

checking process for learning materials to determine whether learning materials can be

automatically assessed using NUnit. The results of black box testing show that all learning

materials have been successfully assessed automatically, as seen in Table 1 below.

Tabel 1. Black Box Testing on Selpu Applications

No. Modul Student Code Test Code Status

1. MP Player Movement playerMovement.cs MPplayerMovement.cs success

2. MT Player Movement TestMove.cs MTplayerMovement.cs success

3. MP Jump Jump.cs MPjump.cs success

4. MT Jump JumpTest.cs MTjump.cs success

5. MP Flip FlipScript.cs MPflip.cs success

6. MT Flip TestFlip.cs MTflip.cs success

7. MP Get Object GetObject.cs MPgetObject.cs success

8. MT Get Object TestGetObject.cs MTgetObject.cs success

9. MP Colliding Object CoObject.cs MPcoObject.cs success

10. MT Colliding Object TestCoObject.cs MTcoObject.cs success

11. MP Post Test Pre.cs MPprepost.cs success

12. MT Pre Test Pre.cs MPprepost.cs success

From the provided module data, it can be seen that testing has been conducted on several

modules using unit testing. The following is an analysis of the data that can be extracted:

• Module Names and Student Codes: Each module has a name and code related to

character movement (Player Movement), jumping (Jump), object flipping (Flip),

object retrieval (Get Object), object collision (Colliding Object), and two pre and post-

tests (Pre Test and Post Test).

• Test Code: Each testing module has a test code related to the tested module. Pre and

post-testing modules have the same test code (Pre.cs).

174

• Testing Status: All module tests are reported as successful (Berhasil), indicating that

the tested functionality implementation aligns with expectations.

• Conclusion: Based on these results, all related modules and tests have been

successfully implemented. The "Berhasil" status indicates that the program code for

each module and test has passed the testing correctly. In this context, the

implementation of functionalities such as character movement, jumping, object

flipping, object retrieval, and collision detection has been successfully tested and

implemented satisfactorily.

• Recommendations: Considering the success of all modules, it is recommended to

proceed to the next stage in development or teaching, according to the needs and

learning objectives. If additional modules are planned, they can be tested and

implemented using the same method.

The purpose of this result analysis is to identify materials that may fall into the easy or

difficult category based on the testing performance. The results of student work are recorded

in Table 2, where the test button module is the easiest material, while the learning module for

object retrieval is the most challenging in this study. This can be inferred from the recorded

numbers.

Tabel 2. UnitTesting on Selpu Applications

No. Modul Successes Failures Compiles

1. MP BUTTON 11 0 11

2. MT BUTTON 20 0 9

3. MP PLAYER

MOVEMENT
21 28 29

4. MT PLAYER

MOVEMENT
30 24 28

5. MP JUMP 36 12 21

6. MT JUMP 28 22 29

7. MP FLIP 43 37 36

8. MT FLIP 46 18 21

9. MP GET OBJECT 34 54 48

10. MT GET OBJECT 40 20 27

11. MP COLLIDING

OBJECT
35 49 41

12. MT COLLIDING

OBJECT
40 33 32

13. FINAL TEST 154 13 23

Based on the presented module testing data, a structured analysis can be drawn as

follows:

a. MP BUTTON and MT BUTTON Modules:

• MP BUTTON module was successfully tested 11 times without any failures

and compiled successfully in all 11 testing occasions.

175

• MT BUTTON module was also successfully tested 20 times without any

failures, but there were 9 compilation failures in the 20 testing occasions.

b. MP PLAYER MOVEMENT and MT PLAYER MOVEMENT Modules:

• MP PLAYER MOVEMENT module was tested 21 times, with 28 failures and

29 compilation failures in the 29 testing occasions.

• MT PLAYER MOVEMENT module was tested 30 times, with 24 failures and

28 compilation failures in the 28 testing occasions.

c. MP JUMP and MT JUMP Modules:

• MP JUMP module was tested 36 times, with 12 failures and 21 compilation

failures in the 36 testing occasions.

• MT JUMP module was tested 28 times, with 22 failures and 29 compilation

failures in the 29 testing occasions.

d. MP FLIP and MT FLIP Modules:

• MP FLIP module was tested 43 times, with 37 failures and 36 compilation

failures in the 43 testing occasions.

• MT FLIP module was tested 46 times, with 18 failures and 21 compilation

failures in the 46 testing occasions.

e. MP GET OBJECT and MT GET OBJECT Modules:

• MP GET OBJECT module was tested 34 times, with 54 failures and 48

compilation failures in the 48 testing occasions.

• MT GET OBJECT module was tested 40 times, with 20 failures and 27

compilation failures in the 40 testing occasions.

f. MP COLLIDING OBJECT and MT COLLIDING OBJECT Modules:

• MP COLLIDING OBJECT module was tested 35 times, with 49 failures and 41

compilation failures in the 41 testing occasions.

• MT COLLIDING OBJECT module was tested 40 times, with 33 failures and 32

compilation failures in the 40 testing occasions.

g. FINAL TEST Module:

• FINAL TEST module was tested 154 times, with 13 failures and 23 compilation

failures in the 154 testing occasions.

From the above analysis, it can be concluded that most modules have been successfully

tested, but some modules show a significant level of failure and compilation failures. Further

analysis and improvements may be needed for these modules to ensure the integrity and

quality of their implementation.

CONCLUSION

Based on the results of the data analysis discussed above, the utilization of asynchronous

learning in self-paced game programming interface education has achieved success in

implementing autograding using unit testing (NUnit). All learning modules, such as MP

BUTTON, MT BUTTON, MP PLAYER MOVEMENT, MT PLAYER MOVEMENT, MP

JUMP, MT JUMP, MP FLIP, MT FLIP, MP GET OBJECT, MT GET OBJECT, MP

COLLIDING OBJECT, MT COLLIDING OBJECT, and FINAL TEST, have been tested

176

successfully without failures and have achieved satisfactory grades. Nevertheless, some

modules were found to exhibit a significant level of failure and compilation errors, such as

MT BUTTON, MP PLAYER MOVEMENT, MT PLAYER MOVEMENT, MP JUMP, MT

JUMP, MP FLIP, MT FLIP, MP GET OBJECT, MT GET OBJECT, MP COLLIDING

OBJECT, MT COLLIDING OBJECT, and FINAL TEST. Therefore, further improvements

are needed to ensure the integrity and quality of the implementation of these modules. In

conclusion, although most modules have been successfully tested and achieved high grades,

challenges and opportunities for system improvement still exist. The development of learning

modules with more diverse content, enhancements to variables supporting student

understanding, and the implementation of plagiarism detection mechanisms are considered

crucial steps toward enhancing the effectiveness and reliability of the self-paced game

programming interface learning system.

REFERENCES

Kevin Rizky Pratama. (2022). Kominfo Klaim Industri Game di Indonesia Semakin Moncer.

https://tekno.kompas.com/read/2022/10/15/17000057/kominfo-klaim-industri-game-di-

indonesia-semakin-moncer

Khotimah, H., Astuti, E. Y., & Apriani, D. (2019). Pendidikan Berbasis Teknologi:

Permasalahan dan Tantangan. Prosiding Seminar Nasional Pendidikan Program

Pascasarjana Universitas Pgri Palembang, 357–368.

Min, J. L., Rahmani, A., Wisnuadhi, B., & Kunci, K. (2013). Analisis Performansi Marmoset

Untuk Penilaian Pemrograman. 180–184.

Newkirk, J. W., & Vorontsov, A. A. (2009). Test-Driven Development in Microsoft® .NET. 1.

http://books.google.com/books?hl=en&lr=&id=Q_ZajM6o0UMC&pgis=1

North, M. (2012). Data Mining for The Masses. Global Text.

Nurhasan, U. (n.d.). Pembelajaran game menggunakan unity.

Ruslan, M. S. F., Syaifudin, Y. W., Ariyanto, R., Funabiki, N., Patta, A. R., & Wijaya, D. C.

(2021). Implementation of Web-based Interactive Learning Platform for User Interface

Design in Android Programming Learning Assistance System. 2021 International

Conference on Innovation and Intelligence for Informatics, Computing, and Technologies,

3ICT 2021, 315–320. https://doi.org/10.1109/3ICT53449.2021.9582037

Saputra, E., Pratama, I. G. Y., Wicaksono, S. A., Saputra, M. C., Ferdiansyah, M. S., Jasri, M.,

& Widijianto. (2016). Aplikasi Quick Response Dalam Melayani Pengaduan Kerusakan

Sarana Stt Nurul Jadid Berbasis Android Dan. Prosiding Sentia, 2(12), 6–13.

Syaifudin, Y. W., Funabiki, N., Kuribayashi, M., & Kao, W. chung. (2021). A Proposal of

Advanced Widgets Learning Topic for Interactive Application in Android Programming

Learning Assistance System. SN Computer Science, 2(3), 1–13.

https://doi.org/10.1007/s42979-021-00580-1

Végh, L., & Takáč, O. (2021). Teaching and Learning Computer Programming By Creating 2D

Games in Unity. ICERI2021 Proceedings, 1(November), 5696–5700.

https://doi.org/10.21125/iceri.2021.1285

Wijaya, D. C., Syaifudin, Y. W., Ariyanto, R., Funabiki, N., Ruslan, M. S. F., & Mu’Aasyiqiin,

I. (2021). An Implementation and Evaluation of Basic Data Storage Topic for Content

177

Provider Stage in Android Programming Learning Assistance System. 2021 International

Conference on Innovation and Intelligence for Informatics, Computing, and Technologies,

3ICT 2021, 328–333. https://doi.org/10.1109/3ICT53449.2021.9581767

Котлер, Ф. (2008). Keputusan Menteri Ketenagakerjaan Tahun 2022. 282.

